
8 The Delphi Magazine Issue 71

Stack-Based Objects In Delphi
Improving object construction and destruction
by Pedro Agulló Soliveres

The construction and destruc-
tion of small objects in Delphi

can be relatively slow, especially
when compared with languages
such as C++. Overhead in object
construction has several causes.
First of all, the memory manager is
called to get memory for the
object, which results in GetMem
being called. Furthermore, the
VMT pointers have to be initial-
ized: if a class does not implement
interfaces, then only one VMT will
be present, but for classes imple-
menting interfaces several VMT
pointers will have to be initialized.
Finally, object fields will have to be
initialized to zero.

Overhead in object destruction
has several causes. Special fields,
such as strings, interfaces, vari-
ants and dynamic arrays, will have
to be cleaned up to avoid losing the
memory used by them. And the
memory manager will have to be
called to free the object memory,
resulting in FreeMem being called.

With all these issues, construc-
tion and destruction are far from
trivial operations, despite what it
might seem, due to Delphi trans-
parently performing some magic.

In order to improve construction
and destruction speed, we have
found that the best strategy is to
improve memory allocation and
deallocation speed. In fact, in this
article we are going to study how to
avoid the whole issue by allocating
objects on the stack, something
that is not directly supported in

Delphi. This will allow us to
improve construction and destruc-
tion speed by an order of magni-
tude. To provide an idea of the
level of optimization that we will
achieve, Figure 1 shows some mea-
surements for standard heap-
based creation and destruction of
small TInteger objects, as well as
times for stack-based creation and
destruction. These timings are for
a 700MHz Athlon: tests for a Cyrix
200 CPU (that can be considered a
very fast 486 CPU) show as much
as twice these improvements.

How Object Creation And
Destruction Is Accomplished
In order to provide support for
object allocation on the stack, we
will need to understand how
object creation and destruction
are performed.

The first step in object creation
is memory allocation, which is per-
formed by the virtual NewInstance
method. This calls the Instance-
Size class method to find out how
much memory to allocate, and
then GetMem (note, however, that
you can re-define NewInstance to
provide an alternative way of
allocating memory). Finally, New-
Instance calls the non-virtual
InitInstance class method, which
sets up the object VMTs and sets
the remaining memory to zero. As

the last step, the code we wrote
inside our constructor will be exe-
cuted, and then the AfterConst-
ruction virtual method will be
called.

There is another thing to take
into account: if an exception is
raised inside the constructor, then
the destructor will be automati-
cally called to perform cleanup,
and the exception will be re-raised
once this has finished. Note, how-
ever, that if NewInstance fails to
allocate memory, an EOutOfMemory
exception will be raised, but the
destructor will not be called,
because nothing has been con-
structed yet. Furthermore, if
BeforeConstruction fails, then
AfterConstruction will never be
called. Even when BeforeConst-
ruction has successfully finished
for a base class, its corresponding
base class AfterConstruction
method will not be called. Listing 1
shows the pseudocode for object
construction.

When it comes to destruction,
the first step is to call the
BeforeDestruction virtual method,
and then to execute the code we
wrote inside Destroy. Cleanup-
Instance is then called to perform

➤ Listing 1

// Construction pseudocode
obj := TMyClass.NewInstance
// NewInstance executes the
// following lines of code
// obj :=
// Allocate memory(InstanceSize)
// TMyClass.InitInstance(obj);
try
Execute code in our constructor
obj.AfterConstruction

except
Execute code in our destructor

end;

➤ Figure 1: Speed
comparison for construction
and destruction strategies.

July 2001 The Delphi Magazine 9

cleanup of member strings, inter-
faces and other special types, for
which Delphi manages memory
under the covers. As the last step,
the FreeInstance virtual method
will be called to free the memory
allocated by NewInstance. By
default, it just calls FreeMem. You’ll
need to override FreeInstance if
you have taken over memory allo-
cation by overriding NewInstance.
Listing 2 shows the pseudocode for
object destruction.

Of course, the whole process is a
bit more complicated, but this is a
good enough description to allow
us to find a way to allocate our
objects in the stack. The source
code in TraceableClass.pas on this
month’s disk performs a detailed
trace of the construction and
destruction process, including
interaction with base class con-
struction and destruction in the
presence of exceptions.

An Auxiliary Type For
Stack-Based Construction
The first thing to do to perform
construction on the stack is to get
additional space on it for our
object. To do this, we will define an
auxiliary type that has exactly the
same size as our objects:

SizeOf(AuxType) =
TheObjectClass .InstanceSize

placing a variable of that type on
the stack. We will create our object
on top of the space that variable
occupies, as we will see later.

In our example, we will define a
TInteger class, which has an FValue
field, of type Integer (see Listing 3).
The corresponding auxiliary type
will be TIntegerRec, defined:

// Auxiliary type
TVMT = Pointer;
TIntegerRec = record
_VMT : TClass;
_ FValue : Integer;

end;

By providing exactly the same
fields as for the object, plus an
additional field at the beginning,
corresponding to the object VMT,
we will ensure that the defined
record has exactly the same size as
a TInteger instance (OK, that’s not
exact, but we will study this issue
later). Anyway, and just in case we
miss something, we will add an
additional check in the initializa-
tion section of the unit where
TInteger is defined:

Assert(SizeOf(TIntegerRec)
= TInteger.InstanceSize);

This will provide a safety net just in
case we add a field to TInteger and
forget to add it to TIntegerRec.
Additionally, when an object
implements several interfaces,
correctly defining the TxxxRec aux-
iliary type will be a bit more diffi-
cult, and then this check will prove
invaluable. Furthermore, field
layout may vary due to alignment
issues, something that will be
caught by this check: we will deal
with and solve these issues later.

A Simple TInteger Class
Let’s define a simple TInteger
class: simply a wrapper around an
Integer, with a constructor that
receives a value, a destructor that

does nothing (but is needed to
illustrate how to write a destruc-
tor), and a property that allows
setting and getting the Integer
value. The declaration of this class
is shown in Listing 3.

In order to make the process
easier, we provide two auxiliary
methods, DoCreate, and DoDestroy.
If you remember the previous
explanation, the code in Create is
called as the last step in construc-
tion, while the code in Destroy is
called as the first step in destruc-
tion: by writing their code in
DoCreate and DoDestroy, we are pro-
viding an easy way of calling it
without the code magically gener-
ated by Delphi being executed at
the same time. The code for
TInteger is shown in Listing 4.

Supporting On-Stack Creation
The next step is to provide support
for construction and destruction
of TInteger on the stack. To this
end, we are going to define a
CreateObject function that creates
an object on top of a TIntegerRec
variable on the stack, and a
FreeObject function that performs
the equivalent of destroying the
object. Furthermore, since we are
going to place the TInteger on top
of a TIntegerRec variable, we will
provide a GetObject that returns

// Destruction pseudocode
obj.BeforeDestruction
Execute code in our destructor
obj.CleanupInstance
obj.FreeInstance

➤ Listing 2

TInteger = class
private
FValue : Integer;

public
// Just calls DoCreate
constructor Create(value : Integer);
// Just calls DoDestroy
destructor Destroy; override;
property Value : Integer read FValue write FValue;

protected
// Performs all operations for Create, except memory allocation
procedure DoCreate(value : Integer); virtual;
// Performs all operations for Destroy, except memory deallocation
procedure DoDestroy; virtual;

end;

constructor TInteger.Create(value: Integer);
begin
DoCreate(value);

end;
procedure TInteger.DoCreate(value: Integer);
begin
FValue := value;

end;
destructor TInteger.Destroy;
begin
DoDestroy;

end;
procedure TInteger.DoDestroy;
begin
// Ok, we do nothing, but this is needed
// for illustrative purposes

end;

➤ Above: Listing 3 ➤ Below: Listing 4

10 The Delphi Magazine Issue 71

the object given a TIntegerRec. The
interface for these functions is
shown in Listing 5.

It is of paramount importance
that Free or Destroy are never
called for objects created in the
stack by CreateObject: this would
end up in the memory manager
holding a block of memory in the
stack as a free block, due to FreeMem
being called by Destroy.

Note that all methods are over-
loaded, so that we can write other
functions with the same names for
creating and destroying instances
of other classes in the stack.

In order for CreateObject to be
completely equivalent to a con-
structor, we will have to provide a
way of allocating memory for the
object, then initializing that
memory to zero, as well as
initializing the object VMTs, and
then call the code inside the con-
structor and AfterConstruction.
Furthermore, we will have to call
the destructor if some exception is
raised inside the constructor, so
that the standard Delphi semantics
are preserved. The code is shown
in Listing 6.

The memory itself is provided by
placing a TIntegerRec variable in
the stack, which we receive in the
rec parameter. First of all, we ini-
tialize the object’s memory, by
calling InitInstance passing the
address of the allocated memory to

it, that is, @rec. Once this is done,
we get the TInteger created on top
of rec by calling GetObject(rec),
and then call the code inside the
constructor, which we have wisely
placed in DoCreate.

If something goes wrong, the
equivalent of the destructor must
be called, and then the exception
should be re-raised. Of course, we
must not call Free or Destroy. Fur-
thermore, FreeObject cannot be
called, because it calls Before-
Destruction, which is never called
for heap-based objects when the
destructor is called due to an
exception being raised during con-
struction. Hence, we will have to
call DoDestroy and CleanupInstance
manually.

FreeObject is implemented so
that BeforeDestruction is called
first. Next, we execute the code in
the destructor, by calling
DoDestroy. Following that, the
CleanupInstance routine is called.
The order of these calls is impor-
tant, because the code in DoDestroy
may use special fields whose
memory CleanupInstancemay have
to free. The code is shown in
Listing 7.

Please note that FreeObjectmust
never be called for TIntegerRecs
for which CreateObject has not
been called.

The last function to implement is
GetObject, which has a trivial
implementation: it just returns the
address of the TIntegerRec it
receives, as follows:

function GetObject(const rec:
TIntegerRec): TInteger;

begin
Result := TInteger(@rec);

end;

Note that the code we have written
will be almost the same for all
classes: only the call to DoCreate in
the CreateObject will have to be
modified for different classes, and
just to pass different parameters,
thanks to our strategy of encapsu-
lating all the code for construction
and destruction in the DoCreate
and DoDestroy virtual methods.

A Code Sample
Now that we have all the pieces in
place, let’s write a small code
sample that creates a TInteger on
the stack and shows a message
with its value. This code can be
found in Listing 8. As you can see, it
is pretty easy to use these stack-
based objects: the only difference
is that you use CreateObject to
create them, and call FreeObject
passing the auxiliary variable on
top of which the object has been
allocated, instead of using Create
and Free.

Fastest Possible TInteger
Construction And Destruction
It is possible to get much faster
construction and destruction of a
TInteger. To illustrate this, we will
use a TFastIntegerRec auxiliary
type, which just happens to be an
exact copy of TintegerRec: this

// Equivalent to TInteger.Create, but uses the memory provided by rec,
// so that a TIntegerRec in the stack can be used
function CreateObject(var rec : TIntegerRec; value : Integer):
TInteger; overload;

// Returns the TInteger allocated in rec: note that
// CreateObject(rec, value) must have been called previously.
function GetObject(const rec : TIntegerRec): TInteger; overload;
// Subsitutes GetObject(rec).Free. In fact, this can't
// be called because it would call FreeMem(@rec), which is not
// a good idea!
procedure FreeObject(var rec : TIntegerRec); overload;

function CreateObject(var rec : TIntegerRec; value : Integer): TInteger;
begin
TInteger.InitInstance(@rec);
Result := GetObject(rec);
try
Result.DoCreate(value);
Result.AfterConstruction;

except
Result.DoDestroy;
Result.CleanupInstance;
raise;

end;
end;

➤ Listing 8

procedure FreeObject(
var rec : TIntegerRec);

var
obj : TInteger;

begin
obj := GetObject(rec);
obj.BeforeDestruction;
obj.DoDestroy;
obj.CleanupInstance;

end;

➤ Above: Listing 5 ➤ Below: Listing 6

procedure TestStackCreation;
var
r : TIntegerRec;
int : TInteger;

begin
int := CreateObject(r, 10);
try
ShowMessage(
'"int" has a value of ' +
IntToStr(int.Value));

finally
FreeObject(r);

end;
end;

➤ Listing 7

12 The Delphi Magazine Issue 71

way, the demo program will be able
to show both ways of instantiating
stack-based TInteger objects.
Listing 9 shows the code for the
creation and destruction of
TInteger objects on top of
TFastIntegerRec types on the stack.

With respect to the new
CreateObject version, note that we
are relying on the fact that we know
TInteger intimately: therefore, we
know that AfterConstruction and
BeforeDestruction are not
overridden, meaning that they are
do-nothing operations that we do
not need to call. Furthermore, we
know that there are no special
fields that need magic intervention
for cleanup (that is: strings,
dynamic arrays or interfaces) and
because of this we do not need to
call CleanupInstance in the destruc-
tor. Also, since we know that
TInteger has only one VMT, at the
beginning of the object, we can ini-
tialize it by hand, by writing
rec._VMT := TInteger. We do not
need to set the fields’ memory to
zero, because we are directly
initializing the only field in the
object, FValue, and that would be
redundant. By doing all of this man-
ually, we avoid having to call
InitInstance.

Since the destructor does
nothing, we don’t even need to call
DoDestroy, and FreeObject ends up
doing nothing. It is provided only
so that the end-user can write the
same kind of code for different
stack-based classes, calling
CreateObject and then FreeObject,
the same way all heap-based object
construction and destruction code
is written following the same
pattern, by calling Create and later
Free. Of course, not calling
FreeObject is optimal in this case.

With these optimizations in
place, we have made stack-based
construction more than thirty
times faster than heap-based con-
struction in a Pentium-class
machine. Destruction is now more
than sixteen times faster (or, if we
rely on the class user knowing that
there is no need to call any destruc-
tion function for TInteger, we will
get it for free).

To better appreciate the gains
we have made, we have tested how
much time it takes to simply assign
an integer (which is really Integer
construction time): it is less than

five times faster than fast TInteger
stack-based construction. This
makes TInteger stack-based con-
struction a really fast operation,
indeed.

However, be aware that writing a
fast version of the stack-based con-
struction and destruction proce-
dures requires that you fully
understand the whole construc-
tion and destruction process, and
it can break down if somebody
adds an AfterConstruction proce-
dure, adds a special field (such as a
string, etc), and so on.

By contrast, our first attempt at
stack-based construction and
destruction is almost foolproof,
and won’t break if changes are per-
formed to our class. It is up to you
to decide which alternative will be
more convenient.

Issues With
Auxiliary Types Layout
There are several issues that can
affect memory layout in an object
or record, potentially making the
auxiliary type definition incompat-
ible with the class instances it will
hold. For example, Figure 2 shows
the memory layout for a TExtended
class and its auxiliary type for
stack creation, TExtendedRec, when
compiled under Delphi 5 with the
$A+ directive (equivalent to check-
ing the project compiler option
Aligned record fields).

The code for both types is
shown in Listing 10. Note how the
TExtendedRec type is larger than a
TExtended instance (24 bytes
against 20 bytes). However, when
compiled with the $A- directive,

function CreateObject(var rec : TFastIntegerRec; value : Integer): TInteger;
begin
rec._VMT := TInteger;
Result := TInteger(@rec);
Result.FValue := value;

end;
procedure FreeObject(var rec : TFastIntegerRec); overload;
begin
end;

type
TExtended = class
FValue : Extended;

end;
TExtendedRec = record
FVMT : TClass;
FValue : Extended;

end;

➤ Listing 9

➤ Listing 10

➤ Figure 2: Layout for a
TExtended and the auxiliary
TExtendedRec type when
compiled with the $A+
directive under Delphi 5.

14 The Delphi Magazine Issue 71

the TExtendedRec type occupies 14
bytes, against the 16 bytes a
TExtended instance uses, as seen in
Figure 3.

Note that using a TExtendedRec
variable compiled with the $A-
directive would produce disaster
when used to hold a TExtended
compiled with the $A+ directive,
because it does not provide
enough space to hold it. Of course,
this won’t happen, but we need a
foolproof way of guaranteeing that
a TExtendedRec variable will always
be capable of holding a complete
TExtended instance.

Differences in data type sizes
and the layout of data are due to
several factors. For example, the
InstanceSizeof all classes seems to
always be a multiple of four, at
least in Delphi 5, probably due to
the granularity of the memory
manager, which returns blocks of
sizes that are a multiple of four. On
the other hand, the memory layout
for code compiled with $A+ is modi-
fied to get faster access to data, for
example, so that Integer data is
always placed at addresses that
are a multiple of 4, something the
CPU likes a lot. That is the cause of
types having bigger sizes than we
might expect: the unused space is
added by the compiler so that data
is placed at boundaries where
access will be much faster. For fur-
ther information on this, you can
read the Delphi online help,
searching on data alignment, and
especially reading the Record types
entry.

Now, how do we guarantee that
our auxiliary record type is of the
appropriate size? The best
workaround is just not to forget
placing the following safeguard at
the beginning of the initialization
section in the appropriate unit:

Assert(SizeOf(TxxxRec) =
Txxx.InstanceSize);

Then, place a breakpoint in that
line and run the program inside the
debugger, looking at what
Txxx.InstanceSize returns, say
SIZE. Once we have the instance
size, we’ll modify our source code
so that TxxxRec is defined as
follows:

TxxxRec = packed record
FVMT : TClass;
array [0..SIZE-1-SizeOf(
TClass)] of Byte;

end;

In fact, this is probably the best
approach to write the auxiliary
type, because it does not allow
easy back door access to the inter-
nals of our objects through the
TxxxRec variable, a hole our
TIntegerRec implementation left
open. Note too that we can still ini-
tialize the internal TxxxRec VMT by
just writing rec.FVMT := Txxx,
because it is the first field in our
record, and therefore not subject
to movement by the compiler: it is
guaranteed that it will always be
placed at the beginning, the same
way an object VMT is always
placed at the beginning of the
instance.

Classes implementing interfaces
will have more than one VMT, and
therefore manual assignment of
the VMTs is much more difficult,
because we have to know where
each VMT is placed inside the
objects: this can be done both at
compile and run time, but we feel
that it is not worth the effort. Just
calling InitInstance so that the
compiler copes with this issue is a
much safer approach.

Other Issues
There are several things that we
have omitted in the previous dis-
cussion. First of all, we have made
no attempt to override NewInstance
so that we can devise a way of allo-
cating objects in the stack. This
may be feasible, although in an

indirect way, by providing the
address of the stack variable in a
global variable, and then returning
it in NewInstance. However, this is
not very clean, nor is it thread safe.
We do not consider rewriting
NewInstance in this way to be a
good idea.

A better alternative would have
been to define a function that
receives a variable of the auxiliary
record type, TxxxRec, returns an
address as a Txxx object, and then
lets the end-user call Create, by
using the obj.Create syntax, as in
Listing 11.

This looks like a very good idea,
but it has a very important
drawback: if Create fails, the
destructor (or its equivalent) will
not be automatically called, break-
ing the standard Delphi construc-
tion semantics. Of course, the end-
user can take the responsibility for
performing destruction by provid-
ing a try...except block, but he or
she may forget to do that. It is
better to place this responsibility
where it belongs (on the shoulders
of TInteger’s implementor), and
write a function that does what it
has to do. Of course, this is the
CreateObject function we wrote to
begin with.

Another thing to take into
account is that both DoCreate and
DoDestroy have been implemented
as virtual. By doing this, we can
override them in derived classes

➤ Figure 3: Layout for a
TExtended and the auxiliary
TExtendedRec type when
compiled with the $A-
directive under Delphi 5.

July 2001 The Delphi Magazine 15

(typically calling the base class
implementation), making support
of stack-based allocation for
derived classes very easy.

We have offered two ways of pro-
viding support for stack-based
objects: the first was easier, and
more robust, in the sense that
modifications to classes support-
ing stack-based instantiation
would not require modifications to
our code. Our second approach
provided much faster creation and
destruction, at the price of com-
plexity and having to rewrite code
each time a class is modified. We

feel that the second approach is
the one to follow for small classes
for which modifications are very
unlikely, such as object-based
wrappers for primitive types, node
types, and the like, while the first
approach will be more appropriate
for large or unstable classes, espe-
cially if inheritance is involved.

When it comes to the applicabil-
ity of the stack allocation idea, we
would like to note that we are not
limited to providing support for
stack-based allocation. In fact,
what we have provided here is a
way of supporting placement cre-
ation of objects, that is, creation of
objects at the address we desire:

function CreateObject(var rec : TIntegerRec):
TInteger;

begin
Result := TInteger(@rec);

end;
...
var
r : TIntegerRec;
i : TInteger;

begin
i := CreateObject(r);
// This looks good, but if Create fails then the destructor
// is not automatically called
i.Create(33);
// ...

end;

➤ Listing 11

for example, we may implement a
linked list with a node pool for
faster allocation, with nodes that
provide space both for the point-
ers to other nodes and an object
instance. With the mechanisms
outlined here we can create
instances on top of the node, just
after the pointer fields. In fact, we
have implemented such a kind of
list, which outperformed other
lists by a significant factor (more
than three times faster than the
best competing list), with much
less memory wastage.

Acknowledgements
I would like to thank my colleagues
at IPS, Francesc Folguera, Oscar
Carrera, Miquel Angel Carrera and
Jordi Costa, for their suggestions,
as well as for providing a superb
and enjoyable working environ-
ment during the past years.

Pedro Agulló Soliveres is a free-
lance consultant, programmer
and technical journalist specialis-
ing in Delphi, C++ and Java.

	How Object Creation And Destruction Is Accomplished
	An Auxiliary Type For Stack-Based Construction
	A Simple TInteger Class
	Supporting On-Stack Creation
	A Code Sample
	Fastest Possible TInteger Construction And Destruction
	Issues With Auxiliary Types Layout
	Other Issues
	Acknowledgements

